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Calculation of Sound Velocities

of Liquid Metals at their
Melting Point via the Percus-Yevick
Theory of Melting

EDWARD SIEGELT
General Motors Technical Center, Warren, M1, 48090

(Received November 30, 1973)

In this brief note, we utilize the 3N collective coordinate theory of liquids of
Percus and Yevick', as applied to the phenomenon of melting by Omini?, to
calculate the sound velocities in various simple liquid metals at their melting
temperatures. We perform this calculation by taking derivatives of Omini’s?
calculated Percus-Yevick dispersion relations for their “liquid phonon” collec-
tive coordinate elementary excitations of the liquid. We compare these
calculated sound velocities with experimental data, where possible, to ascer-
tain the validity of the liquid phonon dispersion relation as a source of
sound velocities.

Omini® has calculated the melting entropy of a group of simple metals
using the Percus-Yevick! collective coordinate description of the elementary
excitations of a liquid as a collection of liquid phonon bosons. Basically,
Percus and Yevick' replaced the potential energy

V=1/2 T (x-x)= 12 T (1/@n*) [ Ckelk Ei-x) V(k) (1)
i*j i#]j

t Present Address: 68 Stratford Road, Brooklyn, New York 11218, U.S.A.
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by

VY =12 5 5y ek (xix)) @
i#j {k} —

where the {k} is an optimally chosen set of wavevectors. Defining 3N collec-
tive coordinates

qPY = T eikx 3)

VPY becomes
VPY =12 {E} % (@ a_x —N) 4)

where ¥, are k dependent coefﬁci—ents, the potential energy of an assembly
of 3N harmonic oscillators with frequencies

WP’ = K2 kpT/m (1 + vy /kyT) )

with amaximum cut-off frequency of at maximum wavevector Q=(18x%p/m)'/3 ,
where m is the atomic mass of the particles of the liquid and p is the liquid
density. Ascarelli, Harrison and Paskin® have related the long wavelength part
of the liquid structure factor to the set of coefficients, v, via

S(0) =kpT/ (kpT +»y) (6)

so that the Percus-Yevick! liquid phonon dispersion relation, at the melting
temperature, becomes

@ PY' (Ty) = K* kg Ty /m S(0) Q)

For light metals: Li, Na, K, Rb, Cs, Mg, Al, Zn, and Ga S(0) is determined
from the theoretical liquid structure factors of Ashcroft and Lekner?®, which
are based on a packing fraction n of 0.45, giving S(0)=0.025. For the
heavier metals: Pb, Tl and Sn, a value of 7 is chosen such that S (0)= 0.009
for Pb and S(0) = 0.008 for T1 and Sn.

In Table I we reproduce Omini’s® dispersion relations and their derivatives
with respect to dimensionless wavevector (y = k/Q), the distance to the upper
limit of the wavevector set, Q, expressed as a fraction, as estimated from
Omini's? data, the slopes being averages over a wavevector interval taken
from Omini’s Table I. Since

Vg (TM) = (dw(k)/dk)TM - (kB TM /m S(O))I/Z (8)

is defined as the sound velocity, the latter part of the equation being valid
in the long wavelength limit only, the slopes should be the sound velocities in
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each wavevector, or wavelength, interval, at the melting temperature. Also,
since Q(Ty) = (187%p(Tyy)/m)"/3, and

p(Ty) = m/V(Ty) )]
we see that -
Q(Ty) = (1877 / V(Ty))'" (10)

Thus, the volume per atom at the melting temperature is easily calculated
as a function of frequency, and is also represented, since its cube root is the
minimum wavelength at which a sound wave will propagate in the liquid
(i.e. the Percus-Yevick maximum wavevector cut-off)

V(Ty) = 187%/Q* (Ty) (11)

and since
(@/3)m X (Tyy) = V(Ty) (12)
we see that the minimum wavelength for propagation at the melting point is
and A (Ty) han = (13.5m 1 Q(Tyy) (13)
(K(Ty)pax = 27 Q(Ty) / (13.5m)3 (14)

In Figure 1 we illustrate Omini’s? Percus-Yevick liquid phonon dispersion
relations for all the liquid metals treated. These dispersion relations peak

40
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FIGURE1 Omini’s liquid phonon dispersion relations for a variety of simple metals
at their melting temperatures.
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below Q, so that the sound velocities can only be calculated up to the peak
in each dispersion relation. The negative values for sound velocities beyond
each peak are taken as an indication that sound will not propagate for k (or y)
values above the peak. Thus, the kyy,, and Ayqy values estimates above are
in error because the dispersion relations are not increasing monatonic. We
must not forget that this is not a solid with long range order, and the cooked
up collective coordinate description of the liquid by Percus and Yevick!
need not follow the trends we are accustomed to in solids, so the maximum
in the liquid phonon dispersion relations should not come as a surprise. Thus,
equations (10) through (13), predicated on the view that the dispersion
relation would be increasing monatonic, are all wrong by a factor of about 2,
and in Pb by a factor of about 3.

In Figure 2 we plot out the calculated vy (TM)values as a function of
y(=k/Q), with the experimental points as mdlcated. The calculated v, (Ty)
values, except for the long wavelength limit result at y=0, are averages over
some incremental y interval, since Omini’s® dispersion relations were only
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FIGURE 2 Sound velocities at the melting temperature for k=0 and k>0 for a
variety of simple liquid metals.
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given for eight y values between y=0 and y=Q. In Table I we list the
v, (Tyy) values as estimated from the slopes of the Omini? liquid phonon
dispersion relations. Also listed is the exact value we calculate for the long
wavelength limit of the sound velocity

Vs (Ty) = (kg Ty /m S(0)'? (15)

derived from the Ashcroft and Lekner® structure factors via the wavevector
derivative of the Percus-Yevick' dispersion relation (7).

We notice in Figure 1 that v (Tyy) will decrease rapidly to zero as the
wavevector, (frequency) increases, as seen in most cases in Figure 2. This is,
of course, a general rule, the increases in v, (Ty() in some cases between the
long wavelength limit value and the value beginning at y =2 being an indica-
tion that the liquid structure factor for K, Na and Tl and Cs is very steep at
y=0, while that for Li, Sn, Pb, Zn, Rb, Al, Mg and Ga gets very shallow at
y =0, so that v, (Ty) is lower than it is for any y > 0.

Upon comparing our results with the limited experimental data available
we find that the agreement is not as good as would be desired, but the order
of magnitude of the predictions is correct. In Na, Cs, Al, Ga the calculated
sound velocity is about a factor of two off, but in K, Rb, Zn, Pb, Tl and Sn
the calculated sound velocity is a bit worse, being one half to one order of
magnitude from the experimental values quoted in the literature.® Thus, we
conclude that the Percus-Yevick treatment of liquids is not yet of sufficient
modelling ability to exactly predict the experimental sound velocities in
simple liquid metals, but neither is it so bad as to warrent its abandonment.
Clearly, further refinement of the Percus-Yevick collective coordinate theory
of liquids, and relation between the sound velocity and the long wavelength
limit of the liquid structure factor, (15), is needed in order to calculate sound
velocities more accurately in simple liquid metals.

References

1. J. K. Percus and G. T. Yevick, Phys. Rev. 110, 1 (1958).

2. M. Omini, Phil. Mag. 26, 287 (1972).

3. P. Ascarelli, R. J. Harrison and A. Paskin, Adv. Phys. 16,717 (1967).

4. N.W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).

5. R.T Beyer, E.M. Ring, in Liquid Metals, Ed. by S. Beer, Marcel Deker Inc., New

York (1972).



